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Learning a frequency-matching grammar together with lexical idiosyncrasy: 
MaxEnt versus mixed-effects logistic regression 

 

Jesse Zymet, UC Berkeley 
              
 

SPEAKERS KNOW AGGREGATE GENERALIZATIONS AND IDIOSYNCRASIES 
 
1. Language learners frequency match to statistical generalizations across the lexicon1 
 
• E.g., Hungarian vowel harmony (Hayes & Londe 2006): dative forms takes -nɛk or -nɔk, 

depending on backness of preceding stem vowel. Stems ending in... 
o front V tend to take -nɛk: [kɛrt-nɛk] ‘garden’-DAT, [yʃt-nɛk] ‘cauldron’-DAT 
o back V tend to take -nɔk: [ɔblɔk-nɔk] ‘window’-DAT, [bi:ro:-nɔk], ‘judge’-DAT 

 
• Corpus study of monosyl. stems ending in front, unrounded V: 92% take -nɛk; 8% -nɔk. 
 
• In wug tests, speakers presented with fake monosyllabic stems with a front unrounded vowel, 

in aggregate, closely frequency-matched to the 8% -nɔk rate. 
 
(1)     -nɛk  -nɔk (Hayes & Londe 2006) 
  Corpus rate:  92%  8% 
  Wug test rate:  93%  7% 
 
2. But language learners also know lexical idiosyncrasies 
• Speakers know which attested words harmonize, versus not (Hayes & Londe 2006). 
• French speakers even track morpheme-specific rates of liaison (Zymet 2018). 
 
3. Language learners thus internalize nested hierarchy of generalizations: 
 
(2)            Overall harmony rate        Aggregate 
     92%                 generalization 
 
 
 
Harmony rate      Harmony rate Harmony rate          . . .        Granular 
   after /kɛrt/           after /tsi:m/    after /hi:d/                         generalizations 
      100%            100%           0% 
 
• Recent MaxEnt model (Moore-Cantwell & Pater 2016, Zuraw & Hayes 2017, Tanaka 2017): 

o General constraint to frequency match general trend across the lexicon (HARMONIZE) 
o Lexical constraints for specific attested words (HARMN(kɛrt), DON’T-HARMN(hi:d)) 

 
                                                
1 Frisch, Broe, & Pierrehumbert 1996; Coleman & Pierrehumbert 1997; Eddington 1998, 2004; Berkley 2000; Zuraw 2000, 
2010; Bailey & Hahn 2001; Frisch & Zawaydeh 2001; Albright 2002; Albright & Hayes 2003; Ernestus & Baayen 2003; Hayes 
& Londe 2006; Becker 2009; Hayes, Zuraw et al. 2009; et seq. 



Jesse Zymet 
AMP ’18 Talk 

 2 

4. Today: Modeling learning of frequency-matching grammar with lexical idiosyncrasy 
 
• Learning simulations reveal that lexical constraints are too powerful in MaxEnt: 

o A priori, general constraint and set of lexical constraints considered equally viable 
hypotheses about the data in MaxEnt; 

o at high levels of learning, lexical constraints come to explain every form in dataset, 
rendering the general constraint superfluous and ineffective. 

o General constraint weight plummets to zero, failing to predict learners’ frequency-
matching abilities in wug tests. 

 
• Solution: Switch from MaxEnt—essentially single-level logistic regression model—to 

hierarchical MIXED-EFFECTS LOGISTIC REGRESSION MODEL. 
o General/lexical constraints no longer equal: general constraints preserved as fixed 

effects; lexical constraints form random effect. 
o Hierarchical model captures hierarchy of generalizations: aggregate trend + 

idiosyncrasies of individual words. 
o We apply mixed model to variable Slovenian palatalization—with promising results. 

 
MAXENT: THE GRAMMAR-LEXICON BALANCING PROBLEM 

 
5. MaxEnt (Smolensky 1986, Goldwater & Johnson 2003, Hayes & Wilson 2008, et seq) 
• Constraints have numerical weights instead of rankings; 
• surface forms assigned probabilities as function of weights. 
• Learning rooted in accuracy and simplicity: model takes constraints, finds best weights it can 

to fit overall rates in dataset; useless constraints discarded—weight set to zero. 
 
v But MaxEnt fits to overall rates; investigators hadn’t tried to get MaxEnt to also learn which 

words are un/exceptional until recently. The new approach: 
o General constraints for overall trend, lexical constraints for specific-word behavior 
o Moore-Cantwell & Pater (2016), Zuraw & Hayes (2017), Tanaka (2017), inter alia. 

 
6. Does the MaxEnt approach to learning frequency matching & idiosyncrasy work?  
• Suppose we have 46 regulars, 4 irregulars—irregularity rate of 8%. 
• 3 constraints: BEREG, BELEX(regulars), BELEX(irregulars) initiated at 0 weight  
• If we want to learn the dataset better? Multiply frequencies by 10. Worse? By 0.1. 
• (Caveat: introduced a little variability: 0.001% /regs/ surface [irreg]; 0.001% /irregs/ as [reg]) 
 

UR SR Freq. BEREG 
0 

BELEX(reg) 
0 

BELEX(irreg) 
0 

/Regular/ Regular: ≈ 46    
Irregular: ≈ 0 -1 -1  

/Irregular/ Regular: ≈ 0   -1 
Irregular: ≈ 4 -1   

Table 1: MaxEnt input 
 



Jesse Zymet 
AMP ’18 Talk 

 3 

• We want MaxEnt to learn weights such that:  
o in wug test, irregular form picked ~8% of time;  
o attested words (=words in learner input) are pronounced correctly ~100% of time. 
o w(BEREG) = 4, w(BELEX-reg) = 3, w(BELEX-irreg) = 11 gives great results. 

 
• But does MaxEnt learn good weights from the input? Let’s run learning simulation using 

Excel Solver, which can fit parameters of nonlinear models (Fylstra et al. 1998, Harris 1998): 
o Trial run by using data in Table 1, 
o and multiplying frequencies of the dataset by a small factor (0, 0.001, etc.)—we call 

this “childhood”. We learn poor weights (w(BELEX-irreg)=0.5) that don’t fit the data. 
o After each trial, increase frequency factor slightly, get new weights—“adolescence”. 
o When frequencies get large and we think we have final weights—“adulthood”. 

 

      
Figure 1: MaxEnt fails to learn generalization together with idiosyncrasy (σ = 100) 

 
• With frequency factor 0, baby learns 0-valued weights, prefers 50/50 regular/irregular.  
• As child grows (freq. factor 0.0001), rapidly starts to learn regulars, slowly tackling 

irregulars. 
• Early in learning, BEREG is used to explain much of the variation—we see that with low 

nonce irregularity rate. 
• But eventually BELEX constraints grow very high, coming to explain entire set of attested 

data. BEREG comes to explain increasingly less of data, eventually perishing. 
• By adulthood (freq. mult. 1000), BEREG sinks to 0, rendered superfluous/ineffective. 
• At that point, the learner selects regulars/irregulars at 50/50 rate in wug tests—forgetting the 

grammar entirely. See Appendix for simulation output numbers. 



Jesse Zymet 
AMP ’18 Talk 

 4 

7. Hence, the GRAMMAR-LEXICON BALANCING PROBLEM. In MaxEnt... 
 
• A priori, general constraint/set of lexical constraints equally viable hypotheses about data, 
• consequently lexical constraints too powerful: lexical constraints learn each word’s 

behavior before general constraint matches overall 8% trend, at which point frequency 
matching ceases and the general constraint becomes ineffective. 

• No phonological learning; just lexical learning. Implausible that speakers fail wug tests once 
they learn lexicon (see Shademan 2007 for learning in elderly). 

• We need a theory that, while accounting for idiosyncrasies, preserves grammar. 
 
• We search for model possessing GENERALITY BIAS: general, grammatical constraints must 

be privileged to lexical constraints in the learning process. 
o Adjusting MaxEnt penalty term does not work: dividing σ’s by 10 = dividing freq. 

multiplier by 100—merely delays overfitting (see Appendix). 
o High σ(BEREG)/low σ(BELEX) so far does not work; overfits at higher multiplier. 

 
LEARNING LEXICAL VARIATION WITH MIXED-EFFECTS LOGISTIC REGRESSION 

 
8. What about the hierarchical MIXED-EFFECTS LOGISTIC REGRESSION model? 
 
• Similar to binomial logistic regression, except constraints hierarchically arranged as follows: 

o Fixed effects: those constraints that we are actually interested in—e.g., phonological 
constraints, yielding the statistical generalizations in the dataset  

o Random effects: constraints that capture the idiosyncrasies in the data—deviations 
from generalizations captured by fixed effects. 

o We might call this Mixed Effects Maximum Entropy Harmonic Grammar. 
• Used widely in science to capture trends & idiosyncrasies in variable datasets; 
• Linguists employ random intercepts to measure by-word/lexical class idiosyncrasy 

(Fruehwald 2012, Zuraw & Hayes 2017, Smith & Moore-Cantwell 2017, inter alia); 
• Shih & Inkelas (2016)/Shih (2018) even adopt multilevel model as theory of learner. 
 
9. Mixed models hierarchical: random effects “depreciated” relative to fixed effects 
 
We have a fixed effect—a general constraint—BEREGULAR, whose weight is estimated based on 
average harmony rate across the entire dataset—92%. 
 
(3a)  w(BEREG): 𝜇!"" !"#$% 
 

• We want this weight to accurately estimate the average rate across all words, as that 
would be a frequency-matching grammar, mimicking human behavior in wug tests. 

 
We have a random effect (random intercept) consisting of weights for lexical constraints: 

• wBELEX–irreg1, for example, estimated by rate irregular1 (0.001) ... 
• and by overall rate across dataset: 
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(3b) w(BELEX–irreg1):   𝜆!""#$%&'"! ∗ 𝜇!""#$%&'"! + 1− 𝜆!""#$%&'"! ∗ 𝜇!"" !"#$% 
 

 Raudenbush & Bryk (2012), Snijders & Bosker (2012) 
 

• λ: value between 0 and 1, depends on size of the group: w(BELEX–irreg1) will be 
determined more by 𝜇!""#$%&'"! if data have lots of irreg1 tokens rather than few. 

o Predicts more idiosyncrasy with frequent forms, but more grammatical behavior 
with infrequent forms (Morgan & Levy 2016, Moore-Cantwell & Smith 2016). 

• Think of mixed models as follows: fixed effect weights predicts overall rate, and 
random effect weights predict word-specific offsets from overall rate.  

• Source of the generality bias: lexical constraint weights depend on overall average rate.  
 
10. Mixed model performs well on strict exceptionality dataset 
 
We want the learning model to predict: 

• With BEREG, the average rate across all Words in the dataset—hence a frequency-
matching grammar 

• With BELEX–reg/BELEX–irreg, the specific rates for every word. 
 
We run a model of the dataset using the glmer function of the lme4 package R. 

• weight of BEREG is the general intercept 
• weight of BELEX constraints are the coefficients of the levels of the random intercept. 

 
To extract predicted nonce rate from model, you cannot simply plug wBEREG into inverse 
logit—rather, you must “average” over the levels of the random intercept (Pavlou et al. 2015). 

• This involves a complex integral that cannot be calculated analytically; 
• Zeger et al. (1998) provide a good approximation: 

o c is constant equal to !" !
!"!

 
o 𝜏! is variance of random intercept (14.77) 

 

 (4)     
!"# !!"#"$

!!!!!!

!!!"# !!"#"$

!!!!!!
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(5) Results:  Word                        wBELEX        Actual rate        Predicted rate    
 

  reg1      0.69   0.999    0.999    
 

  reg2      0.69   0.999    0.999    
   

  ...   
  

  reg46      0.69   0.999    0.999    
 

  irreg47   -12.46   0.001    0.002   
   

  ...   
 

  irreg50    -12.46   0.001    0.002      

wBEREG = 6.167 
 

OVERALL IRREGULARITY RATE: 8%  
PREDICTED NONCE IRREGULARITY RATE: 7.4% 

 
This model: 

• Predicts word-specific rates—learns lexical effects. 
• Frequency-matches overall rate—mimicking subjects in wug tests—without lexical 

constraints starving general constraint. Grammar sustained after lexical learning. 
 
11. Mixed model performs well on dataset with different lexical rates 
 

• Consider the following: twelve words, each with 1000 tokens, with the different tokens 
undergoing, say, harmony, at different rates. 

 
Word Rate Word Rate Word Rate 

1 0.00 5 0.30 9 1.00 
2 0.00 6 0.80 10 1.00 
3 0.10 7 0.90 11 1.00 
4 0.20 8 1.00 12 1.00 

   Average over all rates: 0.61 
 

Table 2: propensity dataset 
 

• Two kinds of constraints:  
o APPLY (HARMONIZE), whose weight should frequency match to 61% overall rate 
o APPLY-Word1, ..., APPLY-Word12, assists with specific rates 
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(6) Results:  Word             wLex constr.  Actual rate        Predicted rate           
 

  Word1  -16.56  0.000    0.000    
 

  Word2  -16.56  0.000    0.000    
 

  Word3  -7.32  0.100    0.100    
 

  Word4  -6.51  0.200    0.200    
 

  Word5  -5.97  0.300    0.300    
 

  Word6  -3.74  0.800    0.800    
 

  Word7  -2.93  0.900    0.900    
  

  Word8   7.14  1.000    0.999    
 

  Word9   7.14  1.000    0.999    
   

  Word10  7.14  1.000    0.999    
 

  Word11  7.14  1.000    0.999    
 

  Word12  7.14  1.000    0.999      

wHARMONIZE = 5.130 
 

OVERALL AVERAGE APPLICATION RATE: 0.61  
PREDICTED APPLICATION RATE TO NONCE WORDS: 0.66 

 
• I tried MaxEnt on this dataset: 

o Outcomes similar to other dataset, except wAPPLY vacillates/plummets to 0 at 
high levels of lexical learning—see Appendix. 

o See Zymet (2018) for further details. 
 

APPLYING THE MIXED MODEL TO VARIABLE SLOVENIAN PALATALIZATION 
 
• For example, only some suffixes trigger it. 
 
(7a) Stem     Trigger ing suffix /-iʦa/  Non-triggering suffix /-inja/ 
 luk-a   port-GEN  lutʃ-iʦa                  port-DIM   luk-inja        port-DIM 
 bog-a     god-GEN  boʒ-iʦa        god-DIM    bog-inja    god-DIM 
 

o From Toporišič (1997/2000): Of 200 suffixes, only a handful trigger palatalization. 
 
• Different palatalizing suffixes trigger at different rates, suggesting suffix identity plays role: 
 
(7b) /luk-itʃ/, port-DIM          /luk-ina/, port-ABS  /luk-iʦa/, port-DIM 
 lutʃ-itʃ, 18% (558/3147)       lutʃ-ina, 50% (50/100) lutʃ-iʦa, 98% (39/40) 
 luk-itʃ, 82% (2589/3147)    luk-ina, 50% (50/100)  luk-iʦa, 2% (1/40) 
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• Stems undergo at different rates before same suffix, suggesting stem identity plays role. 
 
(7c) Stem     Stem before diminutive -iʦa     
 oblak-a    ‘cloud’-GEN  oblatʃ-iʦa      ‘cloud’-DIM Undergoer  
 nɔg-a      ‘leg’-GEN  nɔg-iʦa ~ nɔʒ-iʦa ‘leg’-DIM Vacillator 
 jak-a            ‘yak’-GEN  jak-iʦa             ‘yak’-GEN Non-undergoer 
  
10. Jurgec (2016) on Slovenian palatalization 
 
• Jurgec extracted words with velar-final stem + palatalizing suffix from two dictionaries:  

o Dictionary of Standard Slovenian (Bajec 2000; 110,000 word types) 
o Slovenian Orthographic Dictionary (Toporišič 2001; 130,000 word types). 

  
• To obtain token rates for each word, he fed them into Gigafida (Logar-Berginc et al. 2012): 

o Text corpus w/ ~1.2 billion tokens from written sources ca. 1990–2011.  
o His resulting data set included ~5.7 million tokens. 

 
• Jurgec suggests phonological factors condition variation in his data:  

o Suffixes with front vocoids trigger more regularly 
o Velars k, g undergo more regularly than x.  
o Suffixes with ʦ trigger less regularly. 
o Palatalization regularly applies to avoid geminate in /...{k, g}+k/ (-k = -DIM) 
o Palatalization blocked by distant postalveolars earlier in the stem. 

 
• Jurgec gives MaxEnt account of phonological conditioning; suffix idiosyncrasy encoded with 

[+/- Pal’n]—only picks out suffixes with any degree of palatalization. 
o But he does observe suffix-specific rates in his study—lexical propensities left to 

further research. 
 
12. Building upon Jurgec (2016): a corpus investigation into lexical propensities 
 
• I show that: 

o Morphemes have LEXICAL PROPENSITIES: suffixes trigger at different rates, and 
stems undergo at different rates, patterning across an entire spectrum ([0.7 Pal’n]). 

o Mixed model encodes propensities while frequency matching to trends. 
 
• Extraction method similar to Jurgec: 

o Words consisting of velar-final stems + palatalizing suffix extracted from Dictionary 
of Standard Slovenian.  

o Each extracted stem concatenated with each of nine suffixes, creating hypoth. words 
o Fed each word into Gigafida, extracting frequencies/token rates 
o Yielded ~3 million tokens of words either undergoing/not undergoing palatalization 

 
• I calculated palatalization rates for each suffix. /ag/ undergoes 22% of time before -/je/, /kak/ 

99% of time; average rate before -/je/ is 88%. 
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Freq:   (4K)        (60K)        (3K)       (159K)    (781K)    (295K)      (99K)     (932K)     (606K) 

 
Figure 2a: palatalization rates for each suffix 

 
What about stems? A histogram of rates across 246 stems occurring before at least four suffixes: 
 
 

 
 

Figure 2b: Histogram of stem palatalization rate frequencies 
 
• Results suggest morphemes have LEXICAL PROPENSITIES: suffixes trigger at different rates, 

and stems undergo at different rates, patterning across an entire spectrum. 
 
• We use mixed-effects logistic regression to encode morphemes on a spectrum                       

([0.7 Pal’n])—significantly improves model fit relative to binary scale ([+/- Pal’n]). 
o Models run using glmer functions of lme4 package (Bates & Maechler 2011) in R. 

 

(113) 
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• In this handout, we focus on/compare performance of following logistic models: 
o Baseline Model, containing fixed effects for: 

§ Stem-final velar identity (k, g, x) 
§ Whether suffix begins with a front vocoid 
§ Whether stem contains an earlier post-alveolar 
§ Whether the suffix contains a post-alveolar affricate  
§ (Contains random effect for whole word; thus we’re regressing over 

frequency-weighted types.) 
o Stem+Suffix Model, containing: 

§ all factors in Baseline Model 
§ plus stem identity and suffix identity, encoded as random intercepts. 

 
• Models compared using Akaike Information Criteria (AIC; Akaike 1973), which scores 

models based on number of parameters and fit to the data: lower score = better.  
o See Bolker et al. (2009) for justification on using this to compare mixed models. 

 
13. Results of Baseline Model 
• Stem-final velar identity significant: k > g (seemingly a faith effect: k → tʃ but g → ʒ) 
• Geminate avoidance significant 
• ʃ...tʃ+ avoidance significant  
• Suffix with ʦ significantly associated with lower rates 
• frontvocoid not significant 
• AIC: 8767.8 
 
     Estimate Std. Err.   z value     p     
Intercept      3.95    0.47    8.29     <0.001 *** 
ref: consg           
consx          1.59    0.66    2.41   0.015 *   
consk          1.96    0.47    4.11     <0.001 ***   
kk             4.94    0.80    6.12     <0.001 ***   
frontvocoid   -0.52    0.39       -1.32   0.183 (n.s.)    
S...S         -1.67    0.78       -2.12   0.033 *     
suff.with.ts  -3.53    0.46       -7.55     <0.001 *** 
 

Output 1a: Baseline Model results for Slovenian palatalization 
 
13. Results of Stem+Suffix Model 

• Significant k > g effect and geminate effect, but no ʃ...tʃ+ effect or suffix-with-ʦ effect 
• Stem and suffix variances highly positive—suggest stem and suffix condition variation 
• Stem variance bigger than suffix variance: maybe undergoers louder than triggers; or 

linearly-first-element bias; or just relative morpheme counts. Feel free to ask in Q&A. 
• AIC value: 7801.5 — substantial reduction from Baseline Model’s 8767.8; 
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Random effects: 
 Groups Name        Variance Std.Dev. 
 stem   (Intercept) 68.06    8.25    
 suffix (Intercept) 19.54    4.42    
Number of obs: 2940918; words: 4822; stems: 2720; suffixes: 9 
 
Fixed effects: 
              Estimate Std. err. z value   p     
Intercept:     1.15      2.24    0.51   0.60 
ref: consg          
consx          2.36      1.00    2.35   0.02  *   
consk          2.59      0.69    3.75  <0.001  ***  
k+k            7.94      1.32    6.01  <0.001  ***  
frontvocoid    2.72      3.01      0.90   0.366    
S...S         -1.20      1.12     -1.06   0.284    
suff.with.ts  -1.88      3.58     -0.52   0.598  
 

Output 1b: Stem+Suffix Model results for Slovenian palatalization 
 
14. AICs suggest suffix and stem identities matter (p < 0.001 by likelihood ratio test) 
• Baseline Model AIC: 8767.8 
• Suffix-Only Model AIC: 8283.7 
• Stem-Only Model AIC: 8128.9 
• Stem+Suffix Model AIC: 7801.5 
• See Zymet (2018) for further elaboration on all these models. 
 
15. Mixed model learns the phonology, frequency matching to statistical trends 
• Matching to overall palatalization rate for k-final stems, and g-final stems 
• Predicts k > g effect 
• Predicts geminate-avoiding palatalization 
 

      
Figure 3a: model succeeds in predicting phonological trends 
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16. The mixed model learns lexical propensities 
• Fares well in predicting suffix-specific rates: 
 
 

  

Figure 3b: model-predicted suffix rates generally match corpus rates 
 
• I submit mixed-effects logistic regression as viable approach to modeling lexical 

variation—to learning of frequency-matching grammar with lexical propensities. 
 

CONCLUSION 
 
• Language learners internalize nested hierarchy of generalizations:  

o they can frequency match to aggregate statistical generalizations across the lexicon,  
o but also know which words are idiosyncratically exceptional, and which are not. 

 
• MaxEnt/single-level regression doesn’t recognize hierarchicality of generalities. I suspect 

problem is broader than just lexical variation: 
o If learner knows two groups of data have different rates, 
o and averages over rates when encountering novel data lying outside both groups, 
o then how could we model this averaging if we have accurate model of group rates? 
o MaxEnt: specific constraints enough to explain data, general constraint superfluous. 
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• Mixed-effects logit/mixed-effects MaxEnt surmounts balancing problem: 
o Hierarchical theory for a hierarchy of generalizations 
o Idiosyncratic effects of vocabulary subordinated to broad effects of grammar 
o Prior studies suggest it as potential model; today I give reason why this should be our 

theory of language competence. 
 
• Future questions I hope to work on: 

§ How should hierarchical theory look—e.g., how to plug random intercept into theory? 
§ Exactly what constraints/kinds of constraints should be considered fixed vs. random? 
§ How to expand mixed-effects MaxEnt to cover more than just the binomial case? 
§ How to get >2 levels of generalization? 

 
Appendix 

 
FAILED LEARNING SIMULATION IN MAXENT (strict exceptionality, 8% irregularity rate) 

 
 
 
 
 
 
 
 
 

 
 
 
 

Table A1: MaxEnt learning simulation output numbers for strict exceptionality data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Freq. 
multiplier 

Be 
Reg 

BeLex 
(regs) 

BeLex 
(irregs) 

Regular 
correct Irreg. correct Nonce 

irreg. rate 
0 0 0 0 0.5000 0.5000 0.5000 

0.0001 1.50 1.62 1.62 0.5304 0.9582 0.1815 
0.001 1.27 2.88 2.88 0.8331 0.9845 0.2185 
0.01 1.07 4.63 4.63 0.9723 0.9966 0.2548 
0.1 0.41 6.22 5.82 0.9955 0.9986 0.3986 

1 0.17 6.69 6.78 0.9986 0.9989 0.4551 
10 0.02 6.87 6.89 0.9989 0.9989 0.4925 

100 0 6.90 6.90 0.9989 0.9989 0.5000 
1000 0 6.90 6.90 0.9989 0.9990 0.5000 



Jesse Zymet 
AMP ’18 Talk 

 14 

FAILED LEARNING SIMULATION IN MAXENT (propensities dataset, 61% applic’n rate) 
 
          

 

 

 

 

 

 

 

 

 

 

 

 

Freq. 
multiplier APPLY FAITH5 APPLY6 APPLY12 

Pred. 
nonce 
rate 

Pred. 
Word5 

rate 

Pred. 
Word6 

rate 

Pred. 
Word12 

rate 
0 0.00 0.00 0.00 0.00 0.50 0.50 0.50 0.50 

0.001 0.00 0.84 1.39 11.19 0.50 0.30 0.80 1.00 
0.01 0.00 0.85 1.39 10.64 0.50 0.30 0.80 1.00 
0.1 1.39 2.23 0.00 8.77 0.80 0.30 0.80 1.00 

1 1.40 2.25 0.00 11.85 0.80 0.30 0.80 1.00 
10 1.37 2.22 0.02 16.17 0.80 0.30 0.80 1.00 

100 0.50 1.34 0.89 8.25 0.62 0.30 0.80 1.00 
1000 1.41 2.27 0.00 6.16 0.80 0.30 0.80 1.00 

10000 0.00 0.85 1.39 12.60 0.50 0.30 0.80 1.00 
100000 0.00 0.85 1.39 11.84 0.50 0.30 0.80 1.00 

1000000 0.00 0.85 1.39 11.84 0.50 0.30 0.80 1.00 
 

Table A2: MaxEnt learning simulation output numbers for propensity data 
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OVERFITTING OUTCOME GENERAL ACROSS MAXENT PENALTY SETTINGS 
 

• E.g., multiplying σ’s by 10 yields same result as multiplying frequency multiplier by 100.  
• Evident in the table below, which presents results of a series of learning simulations of 

the strict exceptionality dataset from above (but only fitting the weight of BEREG to it). 
• Hence decreasing σ merely has the effect of delaying learner overfitting 

 
 σ = 1 σ = 10 σ = 100 

irreg. rate weight irreg. rate weight irreg. rate weight 
m = 0.01 0.4748 0.1008 0.1127 2.0629 0.0213 3.8258 
m = 1 0.1127 2.0629 0.0213 3.8258 

 m = 100 0.0213 3.8258  
 

Table : identical learning outcomes across different values of m and σ 
 

• Manipulating µ also has no effect—yields same learning outcome as if we set µ = 0. 
• What about high σ(BEREG) and low σ(BELEX)? 
• I tried it on a few strict exceptionality datasets (but not including the one given in this 

handout...), and so far the results are negative: 
• Setting σ = 1,000 for BEREGULAR and σ = 10 for the lexical constraints, for example, 

still yielded overfitting, albeit at a high frequency multiplier. 
 

COEFFICIENTS FOR STEMS AND SUFFIXES IN SLOVENIAN 
 

Suffix Rate  Stems (sample) Rate 
-ovje  -4.05 trak-                   -5.34 
-ina   -1.27 tramik-                  0.00 
-nat  -0.40 tradicionalistik-               0.55 
-itʃ -0.38 tragikomik-               1.14 
-ts -0.16 travmatik-              1.30 
-itsa 0.16 tragik-        2.31 
-k 0.58   
-je 1.48 
-n 4.03 

 
• Coefficients run the gamut, suggesting gradience. 
• Suffix coefficients generally track suffix rates we saw toward the beginning. 
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