

POSTERIOR AFFRICATE IN MEE AND CONSONANT-VOWEL PLACE INTERACTIONS

Overview

- Primary data on a laterally-released velar stop in Mee, Papuan
- Evidence that this consonant is /g/ phonologically
- Previously undocumented allophonic variation: [g^L] before front vowels \sim [G^{^B}] before back vowels, supported in an acoustic study
- Potential historical stage in the development of uniform velar laterals
- Consonant-Vowel place interaction in major place (contra Ní Chiosáin & Padgett 1993)

Mee basics (iso ekg; a.k.a Ekari, Ekagi)

- Paniai Lakes Papuan language (Doble 1987, a.o.)
- System of tonal contrasts analyzed by Hyman & Kobepa (2013)
- Syllables: (C)V(V) (onsetless word-initial only)

Con

nsonants:				Vowels and diphthongs:		
	Labial	Coronal	Dorsal	i i		
Stops	p b	t d	k g	e e ei eu		
Nasals	m	n				
Glides	W	j				
	I	1	I			

The velar/uvular affricate: a rare sound

- Voiced closure + lateral/fricative release. New uvular allophone.
- Mee allophony: velar [g^L] before front vowels, and uvular [G^B] before back vowels. The latter allophone never reported before.

(1)	g ^L erg ^L er 'to dry in the sun'	(2)	G ^B a:ti 'ten'
	jug ¹ ei 'to crush'		dag [®] u 'room'
	jag ¹ i: 'to fall'		eg ^s ou 'to pull'

• **Vowel reduction**: short /i e/ are over-short and highly lateralized after [g^L]

g^Lĭdi: 'to take out'; g^Lĕmo: 'cool'; dag^Lĭ 'head' (3)

Mee velar lateral corresponds to a stop /g/ phonologically

- Patterns as a stop in the consonant system (Doble 1987)
- Corresponds to a 'proper' stop [g/k] in a related language Moni (Tebay 2018)
- Always has a clearly identifiable closure

Some cross-linguistic parallels:

- Pre-stopped velar lateral in Hiw, Oceanic (François 2010)
- In Mid-Waghi it variably lacks the closure phase (Ladefoged et al. 1977)
- In general though, velar laterals are *almost always pre-stopped* in other languages (Blevins 1993; François 2010)
- [G^B] is a variant of [G], marginal in Xumi (Chirkova & Chen 2013)

Peter Staroverov

staroverov@wayne.edu

Annual Meeting on Phonology 2018

Data and method

Data from two consultants, both men between 25 and 35 years old

- •S1: elicitation data and a controlled set of /g/ recordings • S2: only elicitation data

Although we will focus on the results from S1, the elicitations with S2 suggest the same pattern.

Controlled recordings:

- Bisyllabic or longer words, tone is not controlled for
- •158 tokens (52 words) for $g_V[-bk]$ and 154 tokens (45 words) for $g_V[+bk]$
- All vowel contexts represented, except for i_u
- •Randomly intersperced with fillers with 1-to-1 ratio. Carrier phrase.

Formant transitions in V_1gV_2

F1 and F2 transitions (at 9/10 of V₁ duration) into $[g^{L}]$ (dotted) and $[G^{B}]$ (solid). Ellipses show ± 1 s. d.

• V₁ transitions had a higher F2 before $[g^{L}]$ than before $[G^{B}]$, compatible with our description ($\beta = 220; SE =$ 60; p < 0.001). LME regression with V_1 quality and V_2 frontness as fixed effects; item and repetition number as random effects

Figure.

•We don't yet have a full explanation for the special behavior of /e/ and /o/

Release quality

- We could separate the release from V_2 in about a third of the tokens: aperiodic signal or attenuated energy in higher frequencies
- Perceptually very distinct release for $[g^{L}]$ vs. $[G^{B}]$

 Release periodicity annotated 	Release periodicity:			
• Release tends to be periodic for [g ^L]		[g ^L]	$[\mathbf{G}_{R}]$	Total
$C_{\rm exc} \left\{ 1, 1, 1, 1, \dots, 1 \right\}$	Aperiodic	6	23	29
• Contound: v_2 qualities are different	Periodic	35	39	74
for [g ^L] vs. [G ^B], hence no direct acoustic comparison is possible	Total	41	62	103

u u:

0 0**'** 0**U**

Sören E. Tebay

tebay@uni-leipzig.de

• Significant interaction: V₂-frontness with V_1 being /e/ ($\beta = 246; SE =$ 87; p < 0.01), and marginal V₂frontness with V₁ being /o/ (β = -175; SE = 90; p = 0.055). See the

Discussion

Our acoustic results are compatible with a categorical $[g^{L}] \sim [G^{B}]$ allophony pattern, based on V₂ frontness

- Release quality is different for two /g/ allophones

C-V coarticulation: potential history for [g^L]?

Velar laterals from stops: Tebay (2018): $*g > g^{L}$ for Paniai Lakes • Hypothetical two-step development, for Paniai Lakes languages: C-V coarticulation > Categorical allophony > Leveling to $[g^{L}]$ *g + V (Moni) $[g_{r} \sim G_{R}](Mee)$ [g^L] (Wodani)

- **Velar laterals from rhotics**: François (2010): $*r > {}^{G}L$ in Hiw (Oceanic) • François suggests *r > R as a first step in this development
- •C-V coarticulation could contribute to reinterpreting *R as [G^B] and to the development of an allophonic pattern, akin to that in Mee
- This hypothesis relies on phonetic similarity and phonological affinity between uvular fricatives and rhotics
- Later leveling towards just the velar variant (as above, for Paniai Lakes)

- **Summary**: Mee could represent a stage in the emergence of velar laterals. • If reinterpretation of C-V transitions is a common source of velar laterals, this might explain why these sounds are almost always pre-stopped
- This hypothesis remains to be further investigated

Implications: CV interactions

CV coarticulation in Mee extends to both the closure and the release, thus targeting major place of the dorsal/uvular affricate.

place (Ní Chiosáin & Padgett 1993)

Assumptions:

- Complex segmens like /g/ in Mee have two distinct phases
- than lateral

Summary of the account:

- CV-coarticulation constraints ac-count for a place difference in the release
- Additional pressure: closure and release must have the same place.
- Overall effect: major place of the whole consonant affected

• V₁ transitions are different, suggesting a distinction in constriction location

• This goes against the claim that C-V place interactions only affect secondary

• Uvular laterals do not exist, hence the release changes to fricated, rather

