Overview

- Primary data on a laterally-released velar stop in Mee, Papuan
- Evidence that this consonant is $/ \mathrm{g} /$ phonologically

Previously undocumented allophonic variation: $\left[g^{\mathrm{L}}\right]$ before front vowels \sim [G^{F}] before back vowels, supported in an acoustic study

- Potential historical stage in the development of uniform velar laterals - Consonant-Vowel place interaction in major place (contra Ní Chiosáin \& Padgett 1993)

Mee basics (iso ekg; a.k.a Ekari, Ekagi)

- Paniai Lakes Papuan language (Doble 1987, a.o.)
- System of tonal contrasts analyzed by Hyman \& Kobepa (2013)
-Syllables: (C)V(V) (onsetless - word-initial only)

Consonants			Vowels and diphthongs:		
	Labial	Coronal	Dorsal		
Stops	p b	t d	kg	e e: ei eu	o o: ou
Nasals	m	n		a a: ai au	
Glides	w	j			

The velar/uvular affricate: a rare sound

- Voiced closure + lateral/fricative release. New uvular allophone.
- Mee allophony: velar [g^{L}] before front vowels, and uvular [G^{B}] before back vowels. The latter allophone never reported before.
(1) g^{L} e:g ${ }^{\mathrm{L}} \mathrm{e}$: 'to dry in the sun' jug'ei 'to crush
jag ${ }^{\text {Li: 'to fall' }}$
(2) G^{b} a:ti 'ten'
dag ${ }^{5}$ ' 'room'
eG ${ }^{\text {b }} \mathrm{ou}$ 'to pull'
- Vowel reduction: short /i e/ are over-short and highly lateralized after [g^{L}]

Mee velar lateral corresponds to a stop / $\mathrm{g} / \mathrm{phonologically}$
- Patterns as a stop in the consonant system (Doble 1987)
- Corresponds to a 'proper' stop $[\mathrm{g} / \mathrm{k}]$ in a related language Moni (Tebay 2018) - Always has a clearly identifiable closure

Some cross-linguistic parallels:

- Pre-stopped velar lateral in Hiw, Oceanic (François 2010)
- In Mid-Waghi it variably lacks the closure phase (Ladefoged et al. 1977) - In general though, velar laterals are almost always pre-stopped in other languages (Blevins 1993; François 2010)
- $\left[\mathrm{G}^{\mathrm{B}}\right]$ is a variant of [G], marginal in Xumi (Chirkova \& Chen 2013)

Data and method

Data from two consultants, both men between 25 and 35 years old - S1: elicitaiton data and a controlled set of $/ \mathrm{g} /$ recordings - S2: only elicitation data

Although we will focus on the results from S1, the elicitations with S2 suggest the same pattern.

Controlled recordings:

- Bisyllabic or longer words, tone is not controlled for
- 158 tokens (52 words) for $\mathrm{g}_{-} \mathrm{V}_{[-\mathrm{bk}]}$ and 154 tokens (45 words) for $\mathrm{g}_{-} \mathrm{V}_{[+\mathrm{bk}]}$
- All vowel contexts represented, except for i_u
- Randomly intersperced with fillers with 1-to-1 ratio. Carrier phrase.

Formant transitions in $\mathrm{V}_{1} 8 \mathrm{~V}_{2}$

F1 and F2 transitions (at 9/10 of V_{1} duration) into [$\left.\mathrm{g}^{\mathrm{L}}\right]$ (dotted) and $\left[\mathrm{G}^{\mathrm{B}}\right]$ (solid). Ellipses show $\pm 1 \mathrm{~s} . \mathrm{d}$.

- V_{1} transitions had a higher F 2 before

 $60 ; p<0.001$). LME regression with V_{1} quality and V_{2} frontness as fixed effects; item and repetition number as random effects
Significant interaction: V_{2}-frontness with V_{1} being /e/ ($\beta=246$; $S E=$ 87; $p<0.01$), and marginal $\mathrm{V}_{2^{-}}$ frontness with V_{1} being /o/ ($\beta=$ $-175 ; S E=90 ; p=0.055)$. See the Figure.
-We don't yet have a full explanation for the special behavior of /e/ and /o/

Release quality

- We could separate the release from V_{2} in about a third of the tokens: aperiodic signal or attenuated energy in higher frequencies
- Perceptually very distinct release for $\left[g^{\mathrm{L}}\right]$ vs. $\left[\mathrm{G}^{\mathrm{F}}\right]$
-Release periodicity annotated
-Release tends to be periodic for [$\left.\mathrm{g}^{\mathrm{L}}\right]$ but aperiodic for [G^{B}]
- Confound: V_{2} qualities are different for $\left[\mathrm{g}^{\mathrm{L}}\right]$ vs. $\left[\mathrm{G}^{\mathrm{B}}\right]$, hence no direct acoustic comparison is possible

Discussion

Our acoustic results are compatible with a categorical $\left[\mathrm{g}^{\mathrm{L}}\right] \sim\left[\mathrm{G}^{\mathrm{K}}\right]$ allophony pattern, based on V_{2} frontness

- Release quality is different for two $/ \mathrm{g} /$ allophones
- V_{1} transitions are different, suggesting a distinction in constriction location

C-V coarticulation: potential history for IS

Velar laterals from stops: Tebay (2018): *g > g for Paniai Lakes

- Hypothetical two-step development, for Paniai Lakes languages:

$$
\begin{aligned}
& \text { *g }+\mathrm{V} \text { (Moni) } \quad\left[\mathrm{g}^{\mathrm{L}} \sim \mathrm{G}^{\mathrm{K}}\right](\mathrm{Mee}) \quad\left[\mathrm{g}^{\mathrm{L}}\right] \text { (Wodani) }
\end{aligned}
$$

Velar laterals from rhotics: François (2010): *r $>{ }^{{ }^{G}} \mathbf{L}$ in Hiw (Oceanic) - François suggests *r $>\mathrm{R}$ as a first step in this development
-C-V coarticulation could contribute to reinterpreting ${ }^{R}$ as $\left[G^{5}\right]$ and to the development of an allophonic pattern, akin to that in Mee

- This hypothesis relies on phonetic similarity and phonological affinity between uvular fricatives and rhotics
- Later leveling towards just the velar variant (as above, for Paniai Lakes)

Summary: Mee could represent a stage in the emergence of velar laterals.

- If reinterpretation of C-V transitions is a common source of velar laterals, this might explain why these sounds are almost always pre-stopped
- This hypothesis remains to be further investigated

Implications: CV interactions

CV coarticulation in Mee extends to both the closure and the release, thus targeting major place of the dorsal/uvular affricate.

- This goes against the claim that C-V place interactions only affect secondary place (Ní Chiosáin \& Padgett 1993)

Assumptions:

-Complex segmens like /g/ in Mee have two distinct phases

- Uvular laterals do not exist, hence the release changes to fricated, rather than lateral
Summary of the account:
- CV-coarticulation constraints account for a place difference in the g^{4}

releas

- Additional pressure: closure and re-
lease must have the same place.
- Overall effect: major place of the whole consonant affected

