Majority Rule in Harmonic Serialism

Introduction

Optimizing over constraints defined in terms of precedence relations produces pathologies - Precedence relations define subsequences, objects without locality or adjacency

- Case study: requiring subsequences to agree yields Majority Rule in Harmonic Serialism - Other cases: Midpoint pathology (Eisner, 1997, 2000) \& Bubble Sort (Lamont, 2018)

Majority Rule largest class in the input controls agreement (Lombardi, 1999; Baković, 2000) *technically plurality rule

Running example: [s] cannot co-occur with [J] (*s. . .f, *. . . s); inputs with both /s/ and /f/ \Rightarrow...surface only with [s] if underlyingly there are more /s/ than $/ \mathrm{j} /(m>n)$
\Rightarrow...surface only with [J] if underlyingly there are more $/ \mathrm{s} /$ than $/ \mathrm{s} /(m<n)$ Majority Rule in parallel Optimality Theory
Necessary ranking: AGREE constraint(s) >> IDENT constraint
\Rightarrow Constraints preferring one class must be ranked low enough as to be inactive

- In parallel OT, Majority Rule optimizes faithfulness constraints
\Rightarrow Candidates that satisfy Agree compete in terms of Ident
\Rightarrow Optimal candidate makes fewest changes, minimally violating IDENT
All else equal, predicted whenever multiple unfaithful candidates satisfy output constraints

/f ...f...f...s...s/	Corr (SIB)	CC-Ident(Ant)[Global ~ Local]	Ident(ant)
a. $\int \ldots \int \ldots \int \ldots s \ldots s$	W 10		L
b. \square		W $6 \sim$ W 1	L
$\rightarrow \mathrm{c} . \int_{i} \ldots \int_{i} \ldots \int_{i} \ldots$ (i) \ldots (Ji			2
d. $s_{i} \ldots$. $s_{i} \ldots \ldots s_{i} \ldots s_{i} \ldots s_{i}$			W 3

Why investigate subsequences?

Phonotactic generalizations co
TSL bans marked substrings
$\left.\begin{array}{l}\text { TSL bans marked substrings on a tier } \\ \text { SP bans marked subsequences }\end{array}\right\}$ Long-distance phenomena
Provide well-defined hypothesis space for investigating classes of output constraints

+1	REG	$<$
		NC
LTT TSL		
LT PT		
SL		

FIN

Majority Rule in Harmonic Serialism

- In HS, candidates only differ from the input via at most one unfaithful operation - Unfaithful candidates can violate a given faithfulness constraint at most once
\Rightarrow No arbitrarily large differences in violations of any faithfulness constraint
\Rightarrow Mechanism that produces Majority Rule in parallel OT does not exist in HS
- Majority Rule is unexpected in HS, but it optimizes globally evaluated CC-Ident

Global and local evaluation in Agreement by Correspondence

- $\operatorname{Corr(SIB):~Assign~one~violation~for~each~pair~of~sibilants~that~do~not~correspond~}$
- CC-Ident(Ant): Assign violations for pairs of correspondents disagreeing in [anterior] Global evaluation: every pair of Local evaluation: only chain-adjacent $\underset{* * *}{\text { correspondents are possible loci pairs of correspondents are possible loci }}$ $\underbrace{\int_{i \ldots S_{i} \ldots s_{i} \ldots s_{i} \ldots s_{i}}^{* *}}_{* * *} \quad(\approx \mathbf{S P})$ $\int_{i} \ldots \int_{i} \ldots \int_{i} \ldots s_{i} \ldots s_{i} \quad(\approx$ TSL $)$
(Bennett, 2013, 2015; Hansson, 2001, 2007, 2010, 2014; Rose \& Walker, 2004; Walker, 2000, 2015)
Globally evaluated CC-Ident produces Majority Rule in HS
- Candidates with corresponding sibilants violate CC-IDENT(ANT) to various degrees - Targeting member of minority class removes more loci than are added - always optimal

Step 1: /fs/	Corr(sib)	CC-Ident(ant)[Global]	Ident(ant)
a. $\int \ldots \int \ldots \int \ldots s \ldots s$	W 10		L
b. \square $\underbrace{{ }_{i} \ldots{\sqrt[S]{i} \ldots s_{i} \ldots s_{i} \ldots s_{i}^{*}}_{*}^{*}}_{i \ldots *}$		W 6	L
		4	1
d. \square $\frac{i_{k * *}{\sqrt{i} \ldots s_{i} \ldots s_{i} \ldots s_{i}}^{* * *}}{}$		W 6	1
Step 2: $\int \ldots \int \ldots \int \ldots \int \ldots s$	Corr(sib)	CC-Ident(ant)[Global]	$\operatorname{ldent(Ant)~}$
a. $\int \ldots \int \ldots \int \ldots \int \ldots s$	W 10		L
b. $\sqrt{\int_{i} \ldots \sqrt{i}_{i} \ldots{\sqrt{i} \ldots \int_{i} \ldots s_{i}}_{*}^{*}}$		W 4	L
\rightarrow c. $\int_{i} \ldots \int_{i} \ldots \int_{i} \ldots \int_{i} \ldots$. d $^{\text {d }}$			1
d.		W 6	1

Locally evaluated CC-Ident cannot produce Majority Rule (or iterative harmony) in HS

- With local evaluation, each change creates as many new loci as are removed
- Iterative harmony is harmonically bounded (Wilson, 2003; Pater et al., 2007)

Step 1: /f ...f...f..s...s/	Corr(sib)	CC-Ident(ant)[Local]	Ident(ant)
a. $\int \ldots \int \ldots \int \ldots s \ldots s$	W 10		
$\rightarrow \text { b. } \int_{i} \ldots s_{i} \ldots \int_{i} \ldots s_{i} \ldots s_{i}$		1	
c. $\int_{i} \ldots \int_{i} \ldots \int_{i} \ldots \int_{i j} \ldots s_{i}$		1	W 1
d. \int		1	W 1

Directional Constraint Evaluation

- Globally-defined constraints motivate iterative spreading in HS, but also overgenerate Locally-defined constraints undergenerate, but represent intuitive generalizations
\Rightarrow Spreading as myopic (Wilson, 2003, 2006)
\Rightarrow Local exceptions in vowel harmony (Finley, 2010)
\Rightarrow Blocking in harmony and dissimilation (McMullin \& Hansson, 2015; McMullin, 2016) Iterative harmony with directional output constraints

\Rightarrow Global constraints cannot pool large numbers of loci \rightarrow no Majority Rule
\Rightarrow Local constraints can differentiate between loci \rightarrow yes iterative spreading
Output constraints are specified for directionality: $R \rightarrow L$ or $L \rightarrow R$
$\Rightarrow R \rightarrow L$ evaluation disprefers loci later in candidates - further to the right is worse
\Rightarrow Relative position of loci defined over lexicographical order of segment indices

Step 1: / $\ldots \ldots$. \ldots S \ldots. ...s/	Agree(sib, ant $)_{R \rightarrow L}$			Ident(ant)
\rightarrow a. $\int \ldots f \ldots$..s...s...s	$\sigma_{2} \sigma_{3}$			1
b. $\int \ldots$.....f...s...s	W	$\sigma_{3} \sigma_{4}$		L
$\text { c. } \frac{\ldots}{} \ldots \ldots \rho \ldots$	W		$\sigma_{4} \sigma_{5}$	1

Directional HS derivations resemble linear rule application (Johnson, 1972)
\Rightarrow Rightmost target repaired at each step, application proceeds strictly leftwards
\Rightarrow Each step is regular (Eisner, 2000); derivations seem to be as well (proof forthcoming)

lustration: Ineseño Chumash directional harmony

Regressive sibilant harmony
Dissimilation between morphemes
Dissimilation blocks \& feeds harmony
(Applegate, 1972; McCarthy, 2007)
s-kamisa-ts/ \rightarrow
[kamiJaat5] 'he wears a shirt'
strikkun/ \rightarrow [stumukun] 'mistletoe' s-tepu?/ \rightarrow [Jtepu?] 'he gambles' s-ti-yep-us/ \rightarrow [Jtiyepus] 'he tells him s-is-tit?/ $\rightarrow[\mathrm{jj}$ 'ti? $] \quad$ he finds it Step :/s-in

Step 1: /s-ij-lu-sisin/	IdentTail	OCP	CrispEdge	Agree(sib,ant $)_{R \rightarrow L}$			Ident
a. sijlusisin				W $\sigma_{1} \sigma_{2}$	$\sigma_{2} \sigma_{3}$		L
b. sijlusij in	W1			W $\sigma_{1} \sigma_{2}$	$\sigma_{2} \sigma_{3}$	$\sigma_{3} \sigma_{4}$	1
c. sislusisin		W1		L			1
d. sislusisin			W1	L			1
e. sijlufisin				W $\sigma_{1} \sigma_{2}$		$\sigma_{3} \sigma_{4}$	1
\rightarrow f. fijlusisin					$\sigma_{2} \sigma_{3}$		1

- Inconsistent with harmony as autosegmental spreading (McCarthy, 2007), ruling out a possible tier-based Share constraint (McCarthy, 2010)

Conclusion and Future Directions

- Output constraints over subsequences are too powerful; local constraints are underpowered - Directional evaluation maintains local generalizations and the right amount of power - Directional-dominant harmony systems (Cook, 1979; Mahanta, 2007; Ribeiro, 2002, 2012) - Possible replacement of Align-also over subsequences (McCarthy, 2003; Hyde, 2012, 2016)
- Are subsequence constraints ever empirically necessary?
- Theory-internal solution to divergent ties (Pruitt, 2009)

Prove whether derivations are computationally regula

