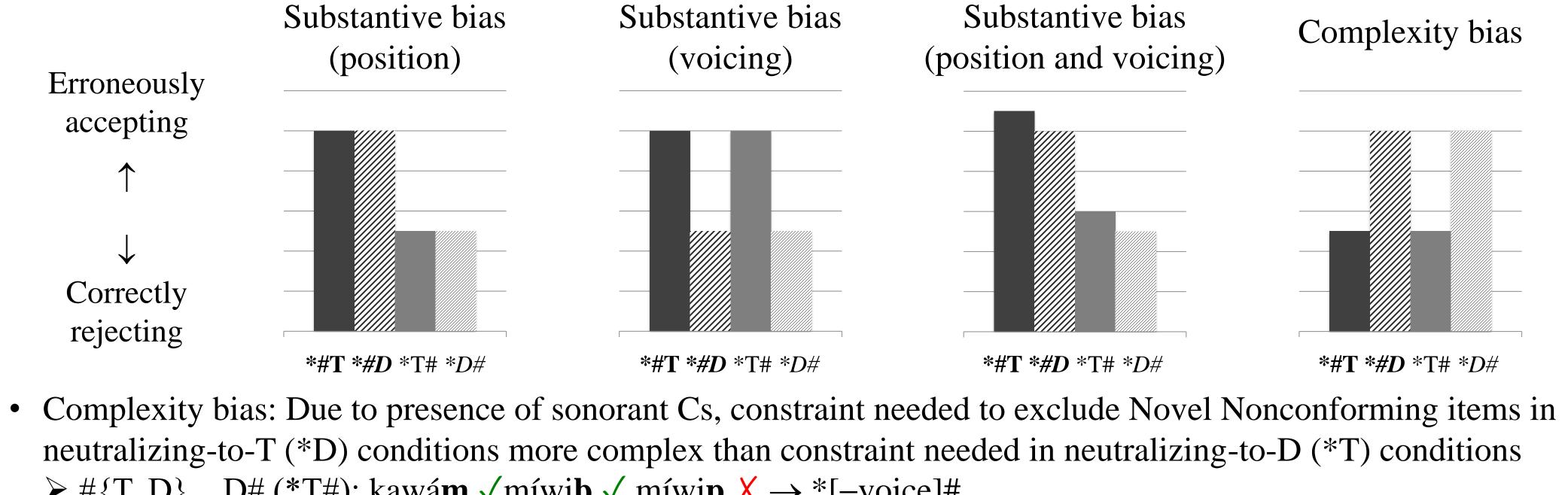


Complexity Bias and Substantive Bias in Phonotactic Learning Eleanor Glewwe Department of Linguistics, University of California, Los Angeles eleanorglewwe@ucla.edu **Experiment 1 Results** Background **Acceptance Rate of Test Items by Condition Novel Conforming**: 1.000.90 > Complexity bias well-supported while evidence for substantive bias mixed and focused on alternations ([2]) 0.80 0.70 conditions 0.60 0.50 • Approach: Test whether learners reproduce a phonetically-motivated phonotactic implicational in an artificial 0.40

- To what extent do synchronic learning biases shape the phonological typology? Complexity bias: bias against formally complex patterns ([1] [3])
- \succ Substantive (a.k.a naturalness) bias: bias against phonetically unnatural patterns ([5] [6])
- **Research question**: Does phonetic naturalness bias phonotactic learning?
- grammar learning experiment
- **The implicational**: Word-final obstruent voicing contrast \rightarrow word-initial voicing contrast, but not necessarily vice versa ([4])

Method

- Expose subjects to stop voicing contrast word-initially or word-finally and test whether they extend the contrast to the other position
- Four training conditions, differing in *Trained Contrast* Position and Trained Neutralization Value


	#T	#D	T#	D #
#D{T, D}# (*#T)	X	\checkmark	\checkmark	\checkmark
#T{T, D}# (*#D)	\checkmark	X	\checkmark	\checkmark
$\#\{T, D\}D\#(*T\#)$	\checkmark	\checkmark	X	\checkmark
$#{T, D}T#(*D#)$	\checkmark	\checkmark	\checkmark	X

• Sample training items for $\#\{T, D\} \dots T\#(*D\#)$:

U			
#T	# D	T#	D #
p ímir t ilár k awám	b ímir d irín g awám	míwi p laní t nuwá k	
• • •	•••	•••	

Experiment 1 Predictions—Novel Nonconforming Items

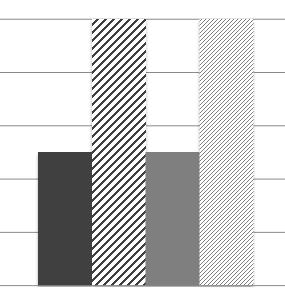
Acceptance rates of Novel Nonconforming items (relative to Novel Conforming items) indicate whether subjects have extended the voicing contrast to a new position in a given condition

 $\geq \#\{T, D\} \dots D\#(*T\#): kawam \sqrt{m}iwib \sqrt{m}iwip \times \rightarrow *[-voice]\#$ $\geq \#\{T, D\} \dots T \# (*D \#): kawam \sqrt{m} iwib \times miwip \sqrt{\rightarrow} *[-son, +voice] \#$

Acknowledgments

Many thanks to Kie Zuraw, Megha Sundara, Robert Daland, and Bruce Hayes for their guidance and advice. Thanks also to Adam Chong, Elliot Moreton, and audiences at CLS 53, the Southern California Meeting on Phonology 2017, AMP 5, and the UCLA Phonology Seminar.

36 training items, 2 blocks of training (with images) • 48 test items (same for all conditions): #T, #D, T#, and D# items (no images)

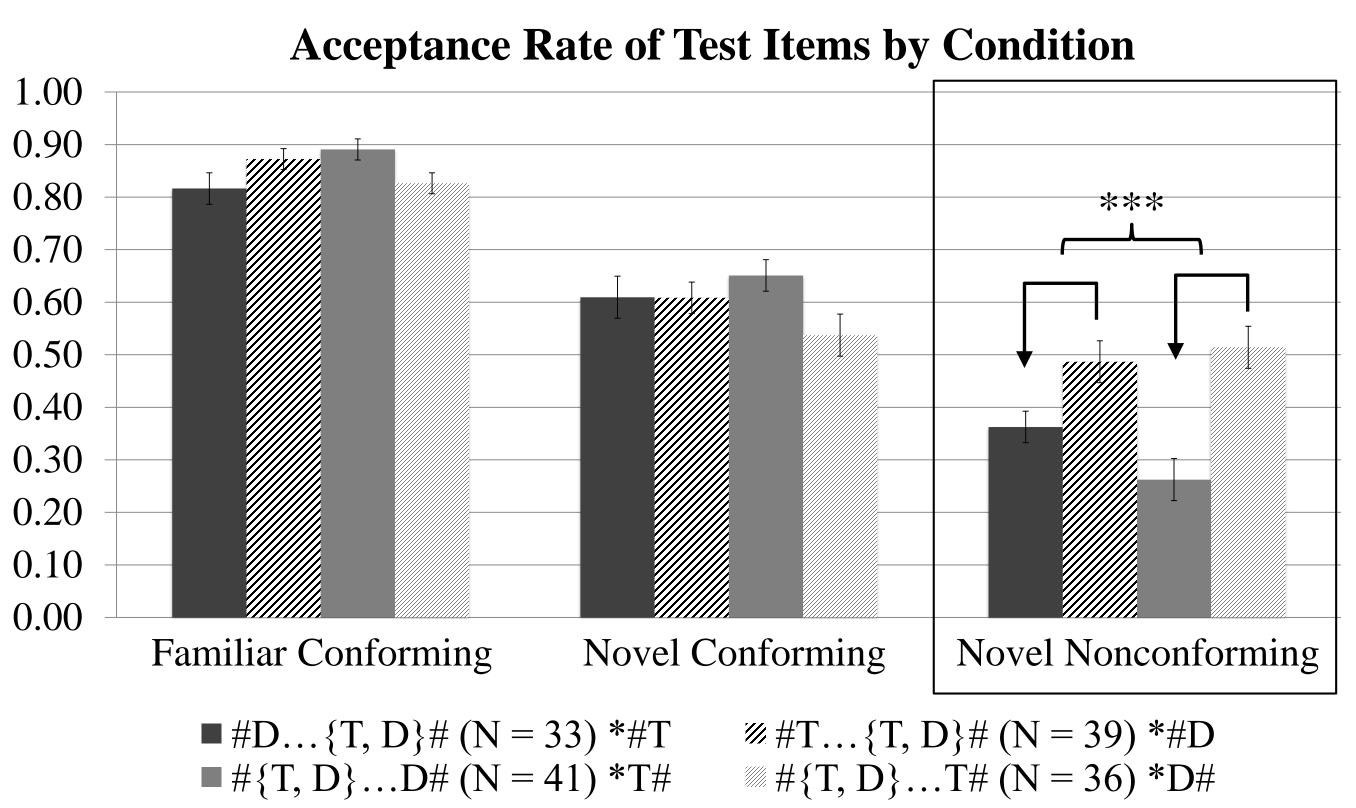

Task: Say whether each word could also be a word of the language heard in training (Yes/No)

- 3 types of test item:
 - **Familiar Conforming**: voicing and position conform to trained pattern, and item heard in training (e.g. *pímir* in $\#\{T, D\}...T\#$)
 - > Novel Conforming: voicing and position conform to trained pattern, but item not heard in training (e.g. *pírum* in $\#\{T, D\}...T\#$)
 - > Novel Nonconforming: voicing and position combination not heard in training (e.g. *nimáb* for $\#\{T, D\}...T\#$

Substantive bias (position and voicing)

*#**T** *#**D** *T# ***D**#

Complexity bias

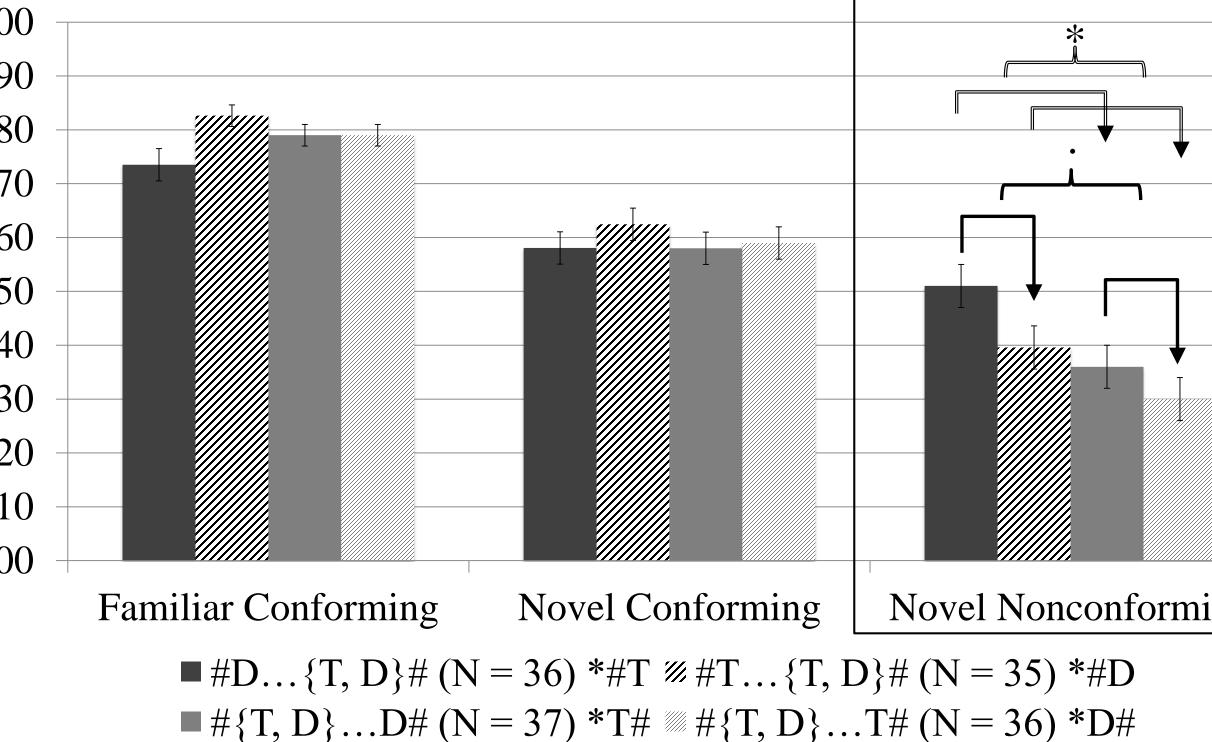


*#T *#D *T# *D#

1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 \mathbf{U} 0.10 0.00

• Experiments 1 and 2 yield mixed support for substantive bias but stronger support for complexity bias An artificial language's non-critical sounds crucially affect performance > Subjects infer phonotactic constraints according to experiment-internal distribution of sounds, opting for simplest constraint with which they can master pattern

[1] Moreton, E. (2008). Analytic bias and phonological typology. *Phonology*, 25, 83–127. [2] Moreton, E. & Pater, J. (2012). Structure and Substance in Artificial-phonology Learning, Part II: Substance. Language and Linguistics Compass, 6(11), 702–718. [3] Skoruppa, K. & Peperkamp, S. (2011). Adaptation to Novel Accents: Feature-Based Learning of Context-Sensitive Phonological Regularities. Cognitive Science, 35, 348–366. [4] Steriade, D. (1997). Phonetics in phonology: The case of laryngeal neutralization. Ms. University of California, Los Angeles. [5] White, J. (2013). Bias in phonological learning: Evidence from saltation. Ph.D. dissertation. University of California, Los Angeles. [6] Wilson, C. (2006). Learning phonology with a substantive bias: An experimental and computational study of velar palatalization. *Cognitive Science*, 30, 945–982.


• Experiment 2:

> To further test complexity bias effect, non-critical (non-stop) Cs changed from sonorants to voiceless fricatives > Now constraint needed to exclude Novel Nonconforming items more complex in neutralizing-to-D (*T) conditions than in neutralizing-to-T (*D) conditions \rightarrow complexity bias prediction flips

- $\#\{T, D\}...D\#(*T\#): túsif \sqrt{fisib} \sqrt{fisip} \times \rightarrow *[-cont, -voice]\#$
- $\#\{T, D\} \dots T\#(*D\#): tusif \sqrt{fisib} \times fisip \sqrt{\rightarrow} *[+voice]#$

Experiment 2 Results

Acceptance Rates of Test Items by Condition

Conclusion

References

- > Above chance in all conditions (generalization \rightarrow learning of trained pattern)
- > Not significantly different across
- Mixed-effects logistic regression fit to **Novel** Nonconforming items with fixed effects Trained Contrast Position and Trained **Neutralization Value**
- > Main effect of **Trained Neutralization Value**: Neutralizing-to-T > neutralizingto-D (***)
 - Supports complexity bias

	•	Novel Conforming:
		\blacktriangleright Above chance in all conditions
		Not significantly different across
		conditions
	٠	Mixed-effects logistic regression fit to Novel
		Nonconforming items with fixed effects
		Trained Contrast Position and Trained
		Neutralization Value
		Main effect of Trained Neutralization
		Value : Neutralizing-to-D > neutralizing-
		to-T ($p = 0.065$)
		 Supports complexity bias
		Main effect of Trained Contrast
ing		Position : Final contrast > initial contrast
		(*)

Supports positional substantive bias

Appendix

Experiment 1 (Sonorant Filler Consonants) Regression Model

Dependent variable: response (accept or reject)

Fixed effects: Trained Contrast Position, Trained Neutralization Value¹ Random effects: intercepts for subject and item

	Coefficient	р
Intercept	-0.964	<0.001***
Trained Contrast Position = initial (vs. final)	-0.197	0.522
Trained Neutralization Value = T (vs. D)	1.063	<0.001***

Experiment 2 (Fricative Filler Consonants) Regression Model

Dependent variable: response (accept or reject)

Fixed effects: Trained Contrast Position, Trained Neutralization Value² Random effects: intercepts for subject and item

	Coefficient	р
Intercept	0.033	0.892
Trained Contrast Position = initial (vs. final)	-0.711	0.012*
Trained Neutralization Value = T (vs. D)	-0.522	0.065

¹ If the interaction of Trained Contrast Position and Trained Neutralization Value is included as a fixed effect in the model, it is not significant (p = 0.208).

² If the interaction of Trained Contrast Position and Trained Neutralization Value is included as a fixed effect in the model, it is not significant (p = 0.727).